A Leg-Local Neural Mechanism Mediates the Decision to Search in Stick Insects

نویسندگان

  • Eva M. Berg
  • Scott L. Hooper
  • Joachim Schmidt
  • Ansgar Büschges
چکیده

In many animals, individual legs can either function independently, as in behaviors such as scratching or searching, or be used in coordinated patterns with other legs, as in walking or climbing. While the control of walking has been extensively investigated, the mechanisms mediating the behavioral choice to activate individual legs independently are poorly understood. We examined this issue in stick insects, in which each leg can independently produce a rhythmic searching motor pattern if it doesn't find a foothold [1-4]. We show here that one non-spiking interneuron, I4, controls searching behavior in individual legs. One I4 is present in each hemi-segment of the three thoracic ganglia [5, 6]. Search-inducing sensory input depolarizes I4. I4 activity was necessary and sufficient to initiate and maintain searching movements. When substrate contact was provided, I4 depolarization no longer induced searching. I4 therefore both integrates search-inducing sensory input and is gated out by other sensory input (substrate contact). Searching thus occurs only when it is behaviorally appropriate. I4 depolarization never elicited stepping. These data show that individual, locally activated neurons can mediate the behavioral choice to use individual legs independently. This mechanism may be particularly important in insects' front legs, which can function independently like vertebrate arms and hands [7]. Similar local command mechanisms that selectively activate the pattern generators controlling repeated functional units such as legs or body segments may be present in other systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereotypic leg searching movements in the stick insect: kinematic analysis, behavioural context and simulation.

Insects are capable of efficient locomotion in a spatially complex environment, such as walking on a forest floor or climbing in a bush. One behavioural mechanism underlying such adaptability is the searching movement that occurs after loss of ground contact. Here, the kinematic sequence of leg searching movements of the stick insect Carausius morosus is analysed. Searching movements are shown ...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Spatial co-ordination of foot contacts in unrestrained climbing insects.

Animals that live in a spatially complex environment such as the canopy of a tree, constantly need to find reliable foothold in three-dimensional (3D) space. In multi-legged animals, spatial co-ordination among legs is thought to improve efficiency of finding foothold by avoiding searching-movements in trailing legs. In stick insects, a 'targeting mechanism' has been described that guides foot-...

متن کامل

Stick Insect Locomotion on a Wheel: Patterns of Stopping and Starting

The relationship between standing and steady walking was investigated for stick insects walking on a wheel. Normal hexapod coordination patterns ensure that each point in the gait cycle has static stability. Nevertheless, stick insects show preferred stopping sequences: the final protraction in ipsilateral metachronal sequences is most often by a front leg and least often by a rear leg (Fig. 1,...

متن کامل

Neurobiology: Reconstructing the Neural Control of Leg Coordination

Walking is adaptable because the timing of movements of individual legs can be varied while maintaining leg coordination. Recent work in stick insects shows that leg coordination set by interactions of pattern generating circuits can be overridden by sensory feedback.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015